Self-consistent generalized Langevin equation theory for liquids of non-spherical brownian particles
dc.audience | generalPublic | es_MX |
dc.contributor | Alarcón Waess, Olegario | |
dc.contributor | Ruiz Estrada, Honorina | |
dc.contributor.advisor | ALARCON WAESS, OLEGARIO; 923 | |
dc.contributor.advisor | RUIZ ESTRADA, HONORINA; 11005 | |
dc.contributor.author | Elizondo Aguilera, Luis Fernando | |
dc.creator | ELIZONDO AGUILERA, LUIS FERNANDO; 271784 | |
dc.date.accessioned | 2020-08-17T19:16:02Z | |
dc.date.accessioned | 2023-01-11T22:29:06Z | |
dc.date.available | 2020-08-17T19:16:02Z | |
dc.date.available | 2023-01-11T22:29:06Z | |
dc.date.issued | 2015-01 | |
dc.description.abstract | "A theoretical approach is proposed in order to describe, in the absence of hydrodynamic interactions, the equilibrium self and collective dynamics of brownian liquids conformed by non-spherical interacting particles. As an extension of the so-called self-consistent generalized Langevin equation formalism (SCGLE), we derive equations of motion for the spherical harmonics projections of the collective and self intermediate scattering functions, Flm;lm(k; t) and FS lm;lm(k; t). In the long-time asymptotic limit, these equations become the socalled bifurcation equations, whose solutions (the nonergodicity parameters) can be written, extending the spherical case, in terms of one translational and one orientational scalar dynamic order parameters, gT and gR, which characterize the possible dynamical arrest transitions of a given system. As concrete and ilustrative applications of our derivations we consider two model systems, namely, a dipolar hard sphere fluid, for which we determine the arrested phases diagram; and a classical Heisenberg dipolar system with positional disorder, for which we solve the full rotational dynamics to characterize spin glass transitions." | es_MX |
dc.folio | 65115T | es_MX |
dc.identificator | 1 | es_MX |
dc.identifier.uri | https://ecosistema.buap.mx/ecoBUAP/handle/ecobuap/480 | |
dc.language.iso | eng | es_MX |
dc.matricula.creator | 215702215 | es_MX |
dc.rights.acces | openAccess | es_MX |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0 | es_MX |
dc.subject.classification | CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA | es_MX |
dc.subject.lcc | Fluidos complejos | es_MX |
dc.subject.lcc | Materia condensada blanda | es_MX |
dc.subject.lcc | Coloides | es_MX |
dc.subject.lcc | Mecánica de fluidos | es_MX |
dc.subject.lcc | Termodinámica | es_MX |
dc.thesis.career | Doctorado en Ciencias (Física Aplicada) | es_MX |
dc.thesis.degreediscipline | Área de Ingeniería y Ciencias Exactas | es_MX |
dc.thesis.degreegrantor | Facultad de Ciencias Físico Matemáticas | es_MX |
dc.thesis.degreetoobtain | Doctor (a) en Ciencias (Física Aplicada) | es_MX |
dc.title | Self-consistent generalized Langevin equation theory for liquids of non-spherical brownian particles | es_MX |
dc.type | Tesis de doctorado | es_MX |
dc.type.conacyt | doctoralThesis | es_MX |
dc.type.degree | Doctorado | es_MX |